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Autonomous agricultural vehicles

Autonomous vehicles in agriculture

Provide favourable improvements to in-field operations;

Extend crop scouting to large areas

Perform in-field tasks in a timely and effective way.
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Guidance, Navigation and Control

Navigation refers to the determination, at a given time, of
the vehicle’s state vector, exploiting filtering algorithms and
sensors measurements.

Guidance refers to the determination of the desired trajectory
from the vehicle’s current location to a designated target, as
well as desired changes in velocity, rotation and acceleration for
following that path.

Control refers to the manipulation of the forces, by way of
steering controls, thrusters, etc., needed to execute guidance
commands while maintaining vehicle stability.
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Mission framework

Mission scenario

a Nebbiolo vine variety vineyard in Barolo;

extending on a slopped terrain of about 0.7 ha;

elevation range: from 460 m to 490 m a.m.s.l.;

vertical shoot position trellis system;

inter-plant/inter-row space: 0.9 m/2.5 m.
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Mission framework

Autonomous vehicles

a a fixed-wing UAV to collect information and aerial imagery;

b a four wheel-steering electric UGV for in-field operations;

c a mini quadrotor UAV for precision scouting above and within rows.

(a) MH900 by MAVTech (b) e-AGRA by DiSAFA (c) Q4T by MAVTech
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Mission framework

Vehicles equipment: on-board sensors

(a) Taoglas Magma GPS (b) Vectornav VN-200 IMU (c) HC-SR04 US
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Mission framework

Vehicles equipment: on-board computers

(a) Pixhawk 4 autopilot (PX4 FW) (b) PC-104 OBC (RT-Linux OS)
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Navigation
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Navigation: Bayesian filtering

Bayesian filtering is a class of filters used as navigation system for autonomous vehicles.

They leverage the a-priori knowledge of a dynamical system model to estimate the state
space which maximises the a-posteriori probability of the observations.

The estimation is performed through a prediction-update approach that effectively com-
pensates for noisy observations.

Bayesian approaches

1 Kalman Filter (KF): pdf imposed to be Gaussian (i.e. N (µ, σ)).

2 Particle Filter (PF): pdf approximated by a set of weighted particles.
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Kalman filter

Two-step procedure

1 Prediction phase

Preliminary estimation of the system states
based on: (i) system model, (ii) applied control

input, (iii) a-priori estimation.

2 Update phase

Update of the preliminary estimation,
computed on the base of the current
observations (sensors measurements).
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Distance filter

Enhancing navigation within crops due to:

1 GPS data typically neither reliable nor always available

=⇒ poor navigation data.

2 Valuable information provided by 3D digital maps:

better comprehension of the environment;

data on crops, e.g. planting location, canopy shape, etc..

Proposed approach: Kalman-based distance filter integrating low complexity maps.
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Distance filter
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Row modeling

(a) (b) (c) (d)

⇒ the j-th row at given height href , composed by Nj segments and described as

rowj =


a1x + b1y + c1 = 0

. . .
aix + biy + ci = 0

· · ·
aNj

x + bNj
y + cNj

= 0
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Ellipsoid method – Phase 1

Definition 2.1 (Confidence ellipsoid)

Given the the prediction x̂k and the covariance matrix of
its uncertainty Pk , the confidence ellipsoid Ek , i.e. i.e.
the deterministic set of possible positions, is defined as

Ek = {x : ||(x − x̂k)||2P−1
k

≤ 1}
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Ellipsoid method – Phase 2

Ultrasound sensors distance d = d⊥ + ed where:

d⊥: measured distance from the UV CoM to

the map on the intercepted 2D slice;

ed = es + em: unknown-but-bounded error;

=⇒ d ∈ [d , d ]

Definition 2.2 (Feasible point set)

Given the confidence ellipsoid Ek and the bounds on d , the feasible point set Fk , i.e. the set
of points which distance is coherent with the measured one, is

Fk=̇{x ∈ Ek : d ≤ d(x) ≤ d}.
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Ellipsoid method – Phase 3

Parallel cut method:

1 Identify the i-th segment compliant with d and x̂
(aix + biy + ci = 0);

2 Define the upper and lower offsets dO , dO to find
the parallel bounds of F ;

3 Identify the two lines, parallel to the one representing
the i-the segment, i.e.

−aTx ≤ β̂, aTx ≤ β

where a = − ai
bi
, β̂ = − ci+aid

O

bi
, β = − ci+aid

O

bi
.
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Ellipsoid method – Phase 4

Definition 2.3 (Propagation ellipsoid)

Given the confidence ellipsoid Ek , defined by xk and Pk ,
and the geometry parameters a, β̂, β, compute the alge-
braic distance of each half-plane from the ellipse center,
i.e. α̂ and α. The propagated ellipsoid Ed

k is defined by
its center xd

k and shape matrix Pd
k , computed as

xd
k = xk − τ

Pka√
aTPka

, Pd
k = δ(Pk − σ

Pka(Pka)T√
aTPka

),

where σ, τ , and δ are the dilation, step, and expansion
parameter of the ellipsoid method, respectively.
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Distance filter for UAVs

From 2D to 3D:

presence of wind turbulence affecting the UAV
attitude and altitude

⇓
real-time roto-translation of the reference

plane containing UAV CoM;

higher computational demand due to a larger
configuration space

⇓
introduction of a moving-window approach for

accelerating reference slice selection.
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Particle filter

Kalman filter: 1 particle VS Particle filter: Ns particles.

Each particle is a possible realisation of state and provides its estimation and reliability (weight).

Three-step procedure:

1 propagation phase according to system model ;

2 weight update phase according to measurements;

higher weight ⇒ higher probability to be a
representative sample;

3 resampling phase according to updated weights;

higher weight ⇒ higher probability to be resampled
multiple times.
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Multiple weights particle filter

Particle filter for autonomous navigation of agricultural vehicles:

PROS: ability to deal with non-Gaussian probabilities.

CONS: high computational demand when applied to large systems and large Ns .

=⇒ Multiple weights particle filter (MW-PF):

system state space divided in J partitions;

multiple weights associated to each particle;

a weight for each partition;

more efficient use of particles

more information for each particle.
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Single state weighted particle filter

When multiple, heterogeneous sensors are involved, observation features shall be included.

Proposed solution: single state weighted particle filter with distance filter.

The main features of the SSW-PF are:
a each particle s ik is defined by the couple {x̂ i

k ,w
i
k}, where

x̂ i
k ∈ RD is the i-th particle state estimation;

w i
k = [w i,1

k , w i,2
k , . . . w i,j

k , . . . w i,D
k ]T ∈ RD is the vector of weights for i-th sample;

w i,j
k is the weight of the j-th state variable related to the i-th particle;

w (z)
k is the weights updater vector from the sensor (z), according to its observations.

b less particles required to achieve the same accuracy of a standard PF;

c information carried by each particle maximized.
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Multiple-weights particle filter

Proposed approach:

1 standard propagation phase;

2 state-oriented weights update: weights updater from each sensor observation, 1 for
non-observed states;

3 parallel, state-oriented resampling: the single state variables are resampled.
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Results

Figure 1: Estimation error for KF, PF, SSW-PF, and SSW-PF with distance filter.
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Results

Figure 2: 75th percentile error for PF, SSW-PF,
and SSW-PF with distance filter.

Figure 3: RMSE for PF, SSW-PF, and SSW-PF
with distance filter.
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Comparison of navigation algorithms

Figure 4: Estimated trajectory obtained using different approaches.
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Guidance
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Guidance for autonomous navigation

We have to guarantee the ability to generate optimal and feasible path given:

1 current vehicle location;

2 mission and operative tasks;

3 kinematic/dynamic constraints.

Several criteria for path generation:
1 shortest distance;

2 minimum energy/consumption;

3 maximum area coverage;

4 etc.
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Motion planning

Definition (Motion planning problem)

Given a robot with d degrees-of-freedom in an environment with n obstacles, find a collision-free
path connecting the current configuration (start) of the robot to the desired one (goal).

The robot and obstacle geometry are de-
scribed either in a 2D or in a 3D workspace,
while the motion is represented as a path
in a (possibly higher-dimensional) configu-
ration space.
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Guidance for ground vehicles - Global planners

Global planners: generate intermediate goals (waypoints).

graph search-based schemes, i.e. graph-search schemes computing paths over
occupancy maps. Some examples are:

1 Dijkstra algorithm (Madari, Adlonge, and Sharmila, 2019),
2 A∗ (Santos et al., 2019),
3 D∗ (Abrahão, Megda, Guerrero, and Becker, 2012).

sample-based path planners, i.e. randomly sample the configuration space,
looking for connectivity inside it and providing suboptimal trajectories. Some
examples are:

1 probabilistic roadmaps (Kavraki, Svestka, Latombe, and Overmars, 1996),
2 randomized potential fields (Yan et al., 2020),
3 rapidly-exploring random trees (LaValle, 1998),
4 RRT ∗ (Messina, Fredda, Di Pietra, and Lingua, 2021).
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Guidance for ground vehicles - Local planners

Local planners: guarantees smoothness and affordability.

interpolating curves, often used as path smoothing solutions for a given set of
waypoints. Some examples are:

1 line and circle curves (Hsieh and Özguner, 2008),
2 clothoid curves (Behringer and Müller, 1998),
3 splines (McNaughton, Urmson, Dolan, and Lee, 2011),
4 Dubin (polynomial) curves (Hameed, 2017).

numerical optimization planners, i.e. minimize a given cost function subject to
different constrained variables. The most important technique is:

1 dynamic window approach (Guan, Tean, Oh, and Lee, 2019).
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Proposed guidance approach for UGV

(a) RRT∗ (b) DWA
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Guidance for aerial vehicles

Different guidance algorithms depending on the type of mission the UAV was designed for
(see Sujit, Saripalli, and Sousa, 2014; Rub́ı, Pérez, and Morcego, 2019; Quan et al., 2020):

direction field theory: construction of a vector field that represents the desired ground
track of the UAV, e.g. artificial potential field (Yingkun, 2018);

trajectory smoother: transforming a waypoint-based path into a time-stamped kinemat-
ically and dynamically feasible trajectory (Capello, Guglieri, and Quagliotti, 2013);

informative path planning: combination of global viewpoint selection and evolutionary
optimization enforcing dynamical constraints (Popović et al., 2017).
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Proposed guidance approach for FW-UAV

Defined a set of 2D waypoints, we have:

1 a trajectory smoother, to render the assigned
trajectory kinematically feasible;

2 a cross-track error ϵr as performance index for
aerial mapping capabilities;

3 a look-ahead distance for discerning two con-
secutive waypoints.

Then, we add a terrain following guidance,
based on a ramp function depending on the rel-
ative distance among UAV and j-th waypoint.
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Control
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Control for autonomous navigation

Once the reference trajectory has been defined, either offline or online, it needs to be fed to
the control block, which is in charge of tracking the desired path while eventually fulfilling
operational, mechanical, and safety constraints.

Several different control schemes have been proposed, tested and experimentally validated
in the literature, also for agricultural machines, grouped into three main categories:

1 linear controllers, e.g. PID, LQR, H∞;

2 nonlinear controllers, e.g. LPV, back-stepping, SMC, L1;

3 “intelligent” controllers, e.g. fuzzy logic, NN-based.

In the agricultural framework, (almost) all applications are based on PID and LQR since:

a these algorithms are typically provided with the OBC/autopilot of commercial UVs;

b they are simple to implement, easy to tune, and characterized by a very limited
computational burden.
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Control for ground vehicles

Some examples of control strategies for agricultural ground vehicles:

PID-based control for effective weed and pest control (Gonzalez-de-Santos et al., 2017);

LQR for a robot-trailer system with PSO (Wu, 2018);

SMC for farm vehicles when subjected to sliding (Hao et al., 2004);

fuzzy control for accurate inter-rows weeding (Li et al., 2020);

MPC for autonomous navigation, path-tracking, and steering control.

Our approach, designed for a 4WS electric vehicle, aims at tracking the reference trajectory
while minimizing the slippage generated by ASMs. Two-step approach:

1 proportional steering control, computing desired front/rear wheels steering angles;

2 QP-based velocity optimizer, enforcing non-holonomic constraints.
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Control for aerial vehicles - How does MPC work?

MPC is like playing CHESS

The choice of a move (control action) is realized by pro-
jecting in the future the game scenery (dynamical process
model) and trying to predict how the opponent will answer
to our moves (output).

If in the next move the opponent answers in an unexpected way (measurements), we need to
re-plan our move again in order to counteract the effect of the opponent move (feedback).
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Control for aerial vehicles – LQMPC

Let us consider a discrete-time, linear system xk+1 = Axk + Buk , xk ∈ X, uk ∈ U.
The control problem is to minimize at each time k a given finite horizon cost function

JT (xk ,uk)
.
=

T−1∑
ℓ=0

(
∥xℓ|k∥2Q + ∥uℓ|k∥2R

)
+ ∥xT |k∥2P .

To solve the control problem, we repeatedly solve the following optimal control problem

min
uk

JT (xk ,uk)

s.t. xℓ+1|k = Axℓ|k + Buℓ|k , ℓ ∈ [0,T − 1]

xℓ|k ∈ X, uℓ|k ∈ U, ℓ ∈ [0,T − 1]

xT |k ∈ XT

obtaining u∗k = [u∗0|k , . . . , u
∗
T−1|k ] but implementing only the first control action u∗0|k .

Guidance, navigation and control algorithms for autonomous agricultural systems M. Mammarella et al. 38 / 49



Introduction Navigation Guidance Control

Control for aerial vehicles – TRMPC

MPC performance degrades in the presence of uncer-
tainty, leading to constraints violation and optimiza-
tion infeasibility.

Let’s consider a discrete-time, linear system with
bounded, additive disturbance wk ∈ W

xk+1 = Axk + Buk + wk , xk ∈ X, uk ∈ U.

The objective is to control the associated nominal,
undisturbed system subject to tightened constraints
to allow all the trajectories to robustly lie in a tube
centered on the nominal one.
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Control for aerial vehicles – TRMPC

We consider xℓ|k = zℓ|k + eℓ|k , and uℓ|k = vℓ|k + Keℓ|k .

Then, we design the tightened state and input constraints sets

Z .
= X⊖ SK (∞), V .

= U⊖ KSK (∞), with SK (∞)
.
=

∞∑
ℓ=0

(A+ BK )ℓW.

The control problem becomes

min
vk

JT (zk , vk)

s.t. zℓ+1|k = Azℓ|k + Bvℓ|k , ℓ ∈ [0,T − 1]

zℓ|k ∈ Z, vℓ|k ∈ V, ℓ ∈ [0,T − 1]

zT |k ∈ ZT

obtaining v∗k but implementing only v∗0|k to obtain uk = v∗0|k + K (xk − zk).
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Control for aerial vehicles – SMPC

Robust MPC leads to a pessimistic approach, too conservative when a safe level of con-
straints violation is allowed.

Let us consider a system of the form

xk+1 = A(q)xk + B(q)uk + wk .

One solution is to adopt a probabilistic approach defining so-called chance constraints

PrW{xk ∈ X} ≥ 1− ε

and, selected uℓ|k = vℓ|k +Kxℓ|k , we define a stochastic optimization problem to minimize

JT (xk , vk)
.
= E

{
T−1∑
ℓ=0

(
∥xℓ|k∥2Q + ∥uℓ|k∥2R

)
+ ∥xT |k∥2P

}
.
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Control for aerial vehicles – OS-SMPC

We propose a sample-based approach to design offline an inner approximation of the
chance-constrained set restoring the results provided by the statistical learning theory.

Lemma 4.1 (Statistical learning theory bound)

Given δ ∈ (0, 1) and ε ∈ (0, 0.14), if the number of samples N is such that N ≥ NLT with

NLT
.
=

4.1

ε

(
ln

21.64

δ
+ 4.39nθ log2

8enℓ
ε

)
(1)

then PrW{XN ⊆ Xε} ≥ 1− δ.
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Control for aerial vehicles – OS-SMPC

Offline Step. Before running the online control algorithm:

1 Compute the expected value J̃T of the cost function;

2 Draw N samples to determine XS,α
ℓ , US ,β

ℓ , and XS ,γ
T ;

3 Remove redundant constraints and get D;
4 Determine the first step constraint set DR.

Online Implementation. At each time step k:

1 Measure the current state xk ;

2 Determine the minimizer of the quadratic cost J̃T subject to D and DR

v∗k = arg min
vk

J̃T (2a)

s.t. (xk , vk) ∈ D ∩ DR ; (2b)

3 Apply the control input uk = Kxk + v∗0|k .
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Preliminary results for UGVs
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Preliminary results for FW-UAVs – TRMPC
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Preliminary results for FW-UAVs – OS-SMPC
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Preliminary results for RW-UAVs
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Preliminary results for RW-UAVs
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Thank you for your attention.

Q&A

cesare.donati@polito.it
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